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This part addresses the feasibility of reconstructing the pressure trace in IC engine from
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1. INTRODUCTION

The first part of this paper addressed the issue of using structural vibration measurements
as a means of condition monitoring of internal combustion (IC) engines. This second part
gives more emphasis to the use of structural vibration for assessing the combustion process
which happens to be the most critical phenomenon taking place in IC engines. Indeed, for
both diesel and spark ignition engines, the quality of the combustion in each of the engine
cylinders is an essential factor for achieving optimal operation. Due to its extreme
sensitivity to most malfunctions that are likely to affect the power-train system, the
combustion process itself serves as an excellent indicator for condition monitoring the
engine. Therefore, any effort to determine it is usually justified. This objective requires ad

hoc methods that are more specialized than those discussed in Part I of this paper [1], but
may be used simultaneously in the same condition monitoring procedure.

The paper is structured as follows. In the first section, the usefulness of the cylinder
pressure as a diagnostic indicator of the combustion process is briefly recalled, along with
the difficulties associated with its practical measurement. The details of its reconstruction
from external structural vibration measurements on the engine block are then discussed in
detail. In the second section, the problem is formally phrased in a unified theoretical
framework that encompasses the previous work and gives new insights into the issue. An
important result is deduced which states that the cylinder pressure can be recovered by
applying an inverse filter of a specific structure to the vibration signal. Indeed, such a filter
is proved to be periodically varying in the most general case. Finally, the proposed
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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deconvolution scheme is illustrated on actual signals from a diesel engine. A number of
guidelines are given in order to get statistically sound results that really demonstrate the
effectiveness of the approach.

2. USING THE PRESSURE TRACE AS A DIAGNOSTIC INDICATOR

2.1. MOTIVATIONS

The cylinder pressure traces in IC engines are recognized to be indicators of value, most
often to be used for controlling a set of parameters [2, 3], but for diagnostic purposes as
well [4]. Actually, many faults can be detected by simply inspecting the shape of the
pressure traces: this is typically the case when incomplete combustion, misfire, knock,
abnormal advanced or delayed combustion, or compression losses occur, but also when
some subsystems experience indirect faults such as injector cloggings, valve leakages, etc.
The knowledge of the pressure traces can then be used to derive advanced indicators
dedicated to the surveillance and the diagnosis of the engine. For instance, by solving the
equation of energy conservation, the heat release rate may be deduced to provide more
relevant information on the combustion process in each of the cylinders. Also, the well
known P–V or Clapeyron diagram may be readily set up from the pressure trace to give
valuable information on the indicated power furnished by the engine over the
thermodynamic cycle.

Although attractive, the direct measurement of the pressure trace is hardly tract-able in
practice as it usually requires dismantling or drilling some parts of the engine, especially in
the case of diesel engines. A number of alternative strategies have been sought in the last
decades for measuring the cylinder pressure by means of non-intrusive devices.

2.1.1. Measuring the angular speed

One option is based on the measurement of the instantaneous angular speed of the
crankshaft and then converting it into torques and forces acting on the pistons. The
effectiveness of this procedure has been demonstrated since the mid-1980s [5], yet it should
be pointed out that it is only able to return an image of the pressure traces in a narrow
frequency band, typically below one-fourth of the first natural frequency of the crankshaft
[6]. Even if this frequency is sufficient in practice for tracking rough malfunctions such as
misfires and knocks [7], it is too poor for detecting finer faults that are likely to affect the
combustion process as well.

2.1.2. Measuring the structural vibration of the engine block

Another option is based on the measurement of structural vibrations on the engine
block, which are supposed to result from the suddenly applied pressure forces inside the
cylinders when combustion takes place. It has been shown in the literature that
appropriate post-processing of the vibration signals can then help to recover the pressure
traces partially or fully.

A pioneer approach based on cepstral deconvolution was proposed by Lyon in the early
1980s and seems to have prevailed over classical Wiener filtering for a time [8–10]. Reasons
of this supremacy are due to the inherent robustness of cepstral deconvolution with respect
to variations and errors in the transfer function estimate. Other approaches have been
introduced more recently that achieve robust smoothing in the time domain [11] or
concentrate on a better modelling of the input–output relationship by accounting either
for non-linearities [12] or for time-variations of structural parameters [13].
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The option of indirectly reconstructing the pressure traces from structural vibrations is
far less advanced than that of using angular speed measurements. As a matter of fact, it is
still an open field of research that deserves much attention before a versatile solution is
found to be easily applicable to most industrial cases. This paper aims at introducing some
results that may help toward this prospect.

2.2. PRESSURE RECONSTRUCTION THROUGH VIBRATION DECONVOLUTION: PROSPECTS

AND PITFALLS

Part I of this paper evidenced the importance of associating the vibration signatures
with their generating sources in the engine cycle. Here the vibration signatures of interest
result from the rapid pressure rise due to combustion in each of the cylinders. Figure 1
displays an example of a pressure trace with its resulting vibration signature on the engine
block. The challenge is then to transform this vibration signature back to its excitation
force, i.e. to infer the upper curve from the lower one in Figure 1. Feasibility of this
procedure naturally leads to a number of questions:

(1) Does the vibration signature contain enough information so that the full pressure trace
that generates it can be fully recovered from its measurement? In other words, is the
pressure trace observable from the vibration signature?

(2) Is the vibration signature well isolated in the vibration signal so that its contribution
can be separated out from other vibration signatures? In other words, is the vibration
signature corrupted by some additive noise and if so, is there any way to cope with
that?
Figure 1. (a) Typical shape of the pressure trace in one of the cylinders and (b) its energy spectral density.
(c) The corresponding induced vibration on the engine block and (d) its energy spectral density.
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(3) Does one have any information on the direct input–output relationship between the
pressure trace and its resulting vibration signature that may help to design the inverse
relationship?

(4) Having devised an inverse input–output relationship, how to make it robust enough
with respect to variability among engines (of the same design) so that it can be used on
a large number of them?

2.2.1. Observability of the pressure trace

The issue of observability is first conditioned by the type of vibration measurements.
Actually, most measurements are of the velocity or acceleration type, which means that
the transduced information is that of an oscillation around an equilibrium point. Thus, in
no case can the equilibrium point itself be recovered. As a matter of fact, when only
velocity or acceleration are concerned, it is theoretically not possible to recover the actual
magnitude of the pressure trace. For atmospheric engines, this problem is easily corrected
because the minimum value of the pressure trace is known to equal the atmospheric
pressure (except during the intake stroke where some depression is possible).
Unfortunately, no such reference is available for turbocharged engines so that large
uncertainties should be accounted for with the recovery of the absolute pressure
magnitude.

A second problem in the issue of observability is that the pressure trace has most of its
energy concentrated at low frequencies, say below a few hundred hertz, whereas its
vibration signature is usually found to have little energy there due to the high rigidity of
the engine block. This is well illustrated in Figure 1 where the spectrum of a pressure trace
and that of its corresponding vibration signature are compared. It follows therefore that
real difficulties are expected when trying to reconstruct the low-frequency pressure trace
from the higher-frequency vibration measurement. From a mathematical viewpoint,
reconstruction of the pressure may be viewed as an ill-posed problem, i.e., with no
guarantee of uniqueness, stability or even existence of a solution. Another way to be aware
of this difficulty is to note that the vibration signature shown in Figure 1 is actually shorter
than its excitation, a fact that clearly evidences some loss of information.

2.2.2. Additive noise

It was argued in Part I of this paper that several vibration signatures stemming from
different excitation sources are very likely to overlap in the vicinity of the top-dead-centres
where combustion arise.

In particular, piston slap is recognized to be a major source of disturbance which covers
the vibration signature of combustion both in the time and frequency domain.
Furthermore, at high speed, piston slap can display more vibration energy than
combustion does [14]. Most probably the best way to minimize the effect of piston slap
is to carefully choose the location of the vibration transducer. It was found that the
cylinder head bolts give satisfactory signal-to-noise ratio [10], but other locations
underneath the crankshaft bearings may also prove successful.

Another important corrupting noise to deal with is that coming from inertial forces that
act on the engine block. These forces are located at low frequencies}a few harmonics of
the engine speed}so that they are very likely to interact with the reconstruction of the
pressure trace. Here, the only solution to diminish their effects is to set the experiments at
a moderate engine speed. Indeed, this will lower the piston slap effects at the same time. In
brief, the slower the engine speed, the lesser the additive noise.
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Whatever the strategy, the presence of additive noise will never be cancelled out totally,
yet it will be shown in the following how to counteract its effect by making use of the
cyclostationary property of the vibration signals to process.

2.2.3. Input–output relationship and structural variability

The method for reconstructing the pressure trace will tightly depend on the nature of the
input–output relationship between the pressure trace and its resulting vibration signature
on the engine block. For simplicity, a linear relationship will be assumed, even though this
is nothing other than an approximation. Indeed, non-linearities are clearly evidenced by
such phenomena as the non-linear stiffness of the oil film between the piston skirt and the
cylinder liner or coupling between axial and transverse vibrations. For instance, readers
are referred to reference [12] for an implicit non-linear deconvolution scheme.

Apart from linearity, the classical assumption of time invariance of the input–output
relationship should be questioned as well. Reciprocating engines evidence modifications of
their geometrical configuration within the cycle, so that time invariance is hardly
acceptable in an interval larger than a few degrees around the top-dead-centre. Strictly
speaking, due to the rotation of the crankshaft, one should refer to a periodically angle

varying input–output relationship. In most of the previous studies, angle invariant
relationships have been assumed as a first approximation. It will be shown in the following
that there is no necessity to rely on this simplification as soon as cyclostationarity is
explicitly taken into account.

Having assumed a linear periodically varying relationship, one should finally address
the issue of statistical variability. Indeed, although most deconvolution schemes presume
the input–output relationship to be non-random, it was verified that this ascertainment
hardly holds true for IC engines. Actually, two kinds of variability should be recognized:

(1) Inter-sample structural variability: from one engine to another}pertaining to a given
population with the same design}the input–output relationship will never be exactly
the same [8],

(2) Inter-cycle structural variability: from one cycle to another the input–output
relationship can vary slightly due to some non-predictable effects (changes in the
temperature field, changes in the homogeneity of the oil film, etc.).

Structural variability should not be ignored when designing an inverse input–output
relationship for recovering the pressure trace. In fact, an effective way to integrate it is to
reduce the number of degrees of freedom of the inverse relationship by some kind of
smoothing [8, 11].

Having recognized the actual difficulties associated with the reconstruction of the
pressure trace, the problem will now be stated from a more mathematical standpoint.

3. A UNIFIED FRAMEWORK FOR THE DECONVOLUTION OF CYCLOSTATIONARY
SIGNATURES

This section aims at fitting the issue of deconvolving the vibration signatures measured
on IC engines into a unified framework. The framework is large enough so that it actually
includes a formalization of former studies and enables new breakthroughs to be deduced.
The material used in this section essentially relies on the definition and properties of
cyclostationary processes that were introduced in Part I of this paper [1].

In the aforementioned reference, the basic idea was to recognize that the vibration
signals have periodic statistical patterns, i.e., are cyclostationary in the engine cycle, and
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then to make use of this property for designing specific signal processing tools. Indeed,
the paradigm of cyclostationarity was shown to be perfectly suited for IC engines
since it enables the processing of the vibration signals by means of cyclic statistics

that are locked onto the engine kinematics. This was conveniently achieved by
use of constant angular sampling instead of constant time sampling. However,
when dealing with deconvolution problems, the resort to angular sampling is to be
investigated again.

3.1. TEMPORAL VERSUS ANGULAR SAMPLING

Angular sampling is a very convenient solution for obtaining a discretized signal with a
constant number of points per cycles. This is true whatever the fluctuations of the engine
speed. Thus, its use is recommended when one wants to track vibration signatures that are
expected to occur at constant angular positions in the engine cycle. From this viewpoint,
angular sampling can conveniently simplify the deconvolution process as well. However,
angular sampling sustains some counter-effects which can mitigate against its use in
deconvolution applications.

Precisely, if the input–output relationship between the pressure trace and its vibration
signature has invariant characteristics (e.g., modal parameters), then angular sampling will
make them vary with the engine speed fluctuations. That is, a time invariant input–output
relationship will be turned into an angle varying input–output relationship. Therefore, if
on the one hand one wants to design an invariant inverse relationship, then time sampling
is better recommended than angular sampling. On the other hand, if one wants a
periodically varying inverse relationship, then time or angular sampling may just do it
equally well. This latter case can be shown to be theoretically true as long as the engine
speed is itself a cyclostationary process. This includes constant, periodic and stationary
speeds as particular cases.

Besides, if the identified inverse relationship acts in the angle domain, it will be valid
only for some given nominal speed, so that extreme care must be taken to correctly tune
the engine speed before applying it. The identified inverse relationship in the time domain
may not be so stringent with respect to this requirement.

3.2. THEORETICAL FORMALIZATION

The theoretical formalization of the deconvolution issue is illustrated in Figure 2. For a
given direct input–output relationship, one wants to design an inverse filter that enables
recovery of an estimate of the pressure trace as close as possible to the true one, and robust
enough with respect to additive perturbations on the measured vibration signatures. Once
identified, this inverse filter could then be used on other engines. Note that the solution to
this problem essentially relies on the correct definition of some inverse filter. Indeed, it is
advantageous to directly identify this inverse filter instead of first identifying the direct
input–output relationship and then to invert it, because this would lead to a different and
weaker solution. Let us look at these matters in detail.

3.2.1. Direct input–output relationship

Assume the discretized measured vibration signal is generated by an underlying
stochastic process fY ½m�g; m 2 Z: Here, the sample number m refers either to time
sampling, i.e., t ¼ mTe or to angular sampling, i.e., y ¼ mYe: As depicted in Figure 2, it is
believed that process Y ½m� is the filtered response to the pressure excitation process P½m�
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Figure 2. Theoretical formalization of the deconvolution scheme.
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and is corrupted by some additive noise N½m�: Under the assumption of cyclostationarity
with a cycle period of N samples, the statistics of the triplet fY ½m�;P½m�;N½m�g; m 2 Z are
identical to those of the triplet fYN ½m�;PN ½m�;NN ½m�g; m ¼ 0; . . . ; N � 1 made up of new
stochastic processes whose supports are restricted to the cycle period N of the engine. This
is well formalized by Wold’s isomorphism as discussed in Part I of the paper and
summarized in Figure 3.

If the effective durations of processes YN ½m� and PN ½m� are shorter than the cycle length
N; then the direct input–output relationship may be written as

YN ½m� ¼
Xm

n¼0

h½m; n�PN ½n� þ NN ½m�; m ¼ 0; . . . ; N � 1; ð1Þ

where the causal Green’s function h½m; n�;m4n; is the impulse response of the engine
block to an impulse at sample n: From the cyclostationarity of the underlying process,
h½m; n� is a periodic function such that

h½m; n� ¼ h½m þ N; n þ N�: ð2Þ
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It embodies the more classical case of an invariant input–output relationship for which

h½m; n� ¼ h½m � n�: ð3Þ

In order to take account of small structural variability, h½m; n� is further refined to stem
from a stochastic function H½m; n], such that

EfH½m; n�g ¼ h½m; n�: ð4Þ

3.2.2. Inverse input–output relationship

The objective is to recover the best estimator #PPN of PN from the noisy measurement YN :
It can be shown that the general form of the inverse input–output relationship is [6]:

#PPN ½m� ¼
XN�1

n¼0

g½m; n�YN ½n�; m ¼ 0; . . . ; N � 1; ð5Þ

where g½m; n� is a non-causal Green’s function with period N: The identification of g½m; n�
is typically achieved by minimizing the mean square error between #PPN ½m� and PN ½m�:

gopt½m; n� ¼ argmin
g

XN�1

m¼0

E #PPN ½m� � PN ½m�
�� ��2n o

: ð6Þ

Although the minimization can be done either in the time(angle) or in the frequency
domain, it is preferred herein to carry it out in the frequency domain as the closed form
solution will then give more theoretical insight.

Let *UUN and *VVN be the discrete Fourier Transform vectors computed on two arbitrary
random sequences UN ½m� and VN ½m�; m ¼ 0; . . . ; N � 1: Then define the cross-correlation
spectral matrix SUN VN

between spectral measures *UUN and *VVN as the ensemble average of
the outer product

SUN VN
¼ Ef *VVN

*UU
y
Ng; ð7Þ

where y stands for the transposition and conjugation operator. Note that definition (7) is
theoretically valid since the time(angle) sequences UN ½m� and VN ½m� are of finite duration
on the cycle. Let also *HH and *GG be the matrices associated with the double discrete Fourier
transforms of h½m; n� and g½m; n�: Then, with these notations, equations (1) and (5) become:

*YYN ¼ *HH *PPN þ *NNN ;
#*PP*PPN ¼ *GG *YYN : ð8Þ

The solution to this set of equations can be shown to be

*GGopt ¼ SYN PN
S�1

YN YN
ð9Þ

¼ SPN PN
Ef *HHg E *HHSPN PN

*HH
� �

þ SNN NN

� ��1
: ð10Þ

The closed-form solution (9) highlights the following two important points.

(1) The inverse input/output relationship described by the filter *GGopt is invariant if and only if
*GGopt is a diagonal matrix. This requires three combined conditions:
(a) *HH is a diagonal matrix, i.e., it relates to an invariant filter,
(b) *HH is purely deterministic, i.e., H½m; n� � h½m; n�;
(c) SBN BN

is a null matrix (SBN BN
cannot be diagonal since it is taken for a finite length

random process), i.e., there is no additive noise on the measurement.
(2) The inverse input/output relationship described by the filter *GGopt is periodically varying

under all other cases.



Figure 4. Comparison between the (a) invariant and (b) time-varying regression. Whilst the first one assumes
the data to cluster around a line, the second assumes them to lie in a hyperplane.
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The second statement is a non-trivial result demonstrating that in most cases the
input–output relationship will be periodically varying. Although this is obviously true if
the direct input–output relationship is itself periodically varying, equation (9) states it is
not a necessary condition: it suffices that there exists some cyclostationary additive noise
or some structural variability of the input–output relationship for the inverse filter to
become periodic. Moreover, the periodicity of gopt½m; n� means that a spectral component
*PPN ½k� of the pressure trace at a given frequency line k will be reconstructed from a
weighted average of the frequency components *YY N ½l� of the measured vibration signature
taken at frequency lines l ¼ 0; . . . ; N � 1: Obviously such a regression gives an advantage
over the classical invariant filter where only *YY N ½l�; l ¼ k is used to regress on *PPN ½k�:
This is well illustrated in Figure 4 which compares the time-varying regression with the
invariant one.

Accordingly, it is hoped that the low-frequency components of the pressure signal could
be reconstructed from the higher-frequency components of the vibration signal, that is
*PPN ½k� from some *YY N ½l� with l > k: This effect should circumvent one of the deconvolution
problem mentioned in section 2.2.1.

Finally, it is worth noting that the optimal inverse filter is not the same as the inverse of
the direct filter *HH: Indeed, from equation (9), one only has *GGopt ¼ *HH

�1
if there is neither

additive noise nor structural variability. Hence, the optimal inverse filter ½ *GGopt�kl will tend
to be equal to the ideal equalizer ½ *HH�1�kl at those pairs of frequency lines ðk; lÞ where the
corrupting noise is insignificant.y On the other hand, ½ *GGopt�kl will tend to be an ideal
rejector, i.e., a filter with zero gain at those pairs of frequency lines where the noise is
predominant. Because of the bi-dimensional nature of the filter, higher rejection is
ultimately achieved compared to the invariant case. Actually, noise can be theoretically
attenuated even if its time(angle) and frequency supports overlap with those of the
pressure forces.

3.3. DEALING WITH DETERMINISTIC ADDITIVE NOISE

Derivation of equation (9) holds true only if the additive noise NN is supposed to be
uncorrelated with the pressure trace PN ; i.e., if the cross-correlation spectral matrix
SPN NN

¼ 0: This is a fair assumption provided NN is a non-deterministic process. However,
when NN contains some deterministic contributions}e.g. from periodic phenomena such
y ½M�kl denotes the element at the kth row and lth column in matrix M:
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as piston slap and inertia forces}then in general SPN NN
=0: Strictly speaking, to measure

the actual statistical correlation between processes YN and PN ; one must remove their
deterministic parts before starting the identification process. As explained in Part I of this
paper, this means working on the new centred process defined as

YN ½m� � EfYN ½m�g ð11Þ

and

PN ½m� � EfPN ½m�g; ð12Þ

where EfYN ½m�g and EfNN ½m�g are estimated by synchronous averaging [1].
Another way which may help to understand why this should be done is to realize that

the regression hyperplane associated with filter gopt½m; n� must be corrected from its offset
value so that it is truly affine as shown in Figure 5.

The point discussed in this section is in accordance with the fact that periodic and
second order cyclostationary components should be processed independently as argued in
the first part of this paper. Alternatively, this means working with covariance functions or
matrices where correlation functions or matrices are usually used. In the authors’ opinion,
this point has not been sufficiently stressed in previous studies.

3.4. PRACTICAL IMPLEMENTATION

Equation (9) gave some theoretical insight into the structure of the inverse filter to be
applied to the vibration signal in order to estimate the pressure trace. From an
identification viewpoint, there are more convenient forms to be used. One common feature
of all periodically varying systems is that they require identifying an increased number of
degrees of freedom compared to their invariant counterparts. Therefore direct form
realizations that enable the choice of a reduced number of degrees of freedom should be
preferred.

We shall briefly discuss two candidates. Readers are referred for instance to reference
[15] for more detail on the design of periodically varying filters.

3.4.1. Block structure

This form is defined by the Fourier dual of equation (9). Then, in the time(angle)
domain,

Gopt ¼ KYN PN
K�1

YN YN
; ð13Þ

where (following the discussion of section 3.3) KUN VN
stands for the cross-covariance

matrix of processes UN ½n� and VN ½n�; n ¼ 0; . . . ; N � 1 and ½Gopt�mn ¼ gopt½m; n�:
Figure 5. Illustration of the effect of deterministic additive noise which biases the regression if not taken into
account.
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Compared to equation (9), equation (13) directly identifies gopt½m; n� without the need of
first transforming into the Fourier domain. The reduction of the number of degrees of
freedom is conveniently achieved by replacing K�1

UN VN
by its pseudo-inverse of reduced

rank [6].

3.4.2. Filter-bank structure

The idea is to replace the periodically varying single-input/single-output problem by an
invariant multiple-input/single-output problem. This is achieved by expanding the
periodic filter gopt½m; n� into a Fourier series:

gopt½m þ n;m� ¼
XK

k¼�K

gk
opt½n�e�j2pkm=N ; ð14Þ

where gk
opt½m� now acts as an invariant filter. Equation (5) hence becomes:

#PPN ½m� ¼
XK

k¼�K

XN�1

n¼0

gk
opt½m � n� YN ½n�e�j2pkn=N

	 

: ð15Þ

The filter-bank structure is illustrated in Figure 6. Here, the number of degrees of
freedom is explicitly set by the number K of coefficients in the Fourier series. Identification
of the set of fgk

opt½m�g; k ¼ �K ; . . . ; K follows from classical multi-channel procedures.
In practice, it was found that the choice of one or another implementation forms

depends on the tested engine. In all cases, achieving the smallest number of degrees of
freedom should be preferred.

3.4.3. Estimation issue

Up to here, the discussion was concerned with the implementation and identification of
the periodically varying inverse filter, but no indication was given on how to estimate it.
For instance, what kind of estimate should be used for the covariance matrices KYN PN

and
KYN YN

in equation (13) or equivalent statistics involved in the filter-bank structure?
Indeed, the estimation issue is easily amenable under the assumption of cyclostationarity.
Figure 6. Filter-bank structure for the periodically varying inverse filter.
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Basically, the idea is to replace ensemble averaging by cycle averaging so that estimation of
the expectation operator is possible. The formal definition of this estimator was introduced
in Part I of this paper. For instance, a consistent estimate of KYN PN

is given by

#KKYN PN

� �
mn
¼ p½n�yn½m�h iI

N� p½n�h iI
N yn½m�h iI

N ; ð16Þ
where h � iI

N means averaging over I cycles of length N on any measurement y½n� and p½n� of
processes Y ½n� and P½n� [1].

Application of the material introduced up to now tightly relies on this mathematical
trick.

4. EXPERIMENTS

This last section aims at demonstrating the feasibility of the proposed deconvolution
scheme and assessing its performance. Not only are actual results displayed, but practical
issues that condition their validity are discussed as well.

4.1. METHODOLOGY

From the above discussion, it is clear that the reconstruction of the pressure trace
involves two independent phases: the identification phase which comes up with a model of
the inverse input–output relationship, and a deconvolution phase which uses this identified
inverse model to give an estimate of the pressure traces.

Whilst the identification phase is typically performed in the laboratory, on a test engine,
the deconvolution phase is performed in industry, on different engines. Therefore it is
important to make the inverse filter robust enough so that it can apply to a large number of
engines and not only to that used in the laboratory. This is a problem of statistical
regularization which places a trade-off between learning an exact inverse filter on a given
engine and keeping it general enough. One usual way for dealing with regularization is to
split the recorded data into three independent sets.

The first set}the learning set}is dedicated to identifying the inverse filter whereas the
second one}the validation set}is for tuning the number of degrees of freedom (the smaller
the number of degrees of freedom, the more robust the model). In general, the smallest
prediction error will then occur for an optimal finite number of degrees of freedom on the
validation set much smaller than what one would obtain on the testing set. Finally, the
third set}the test set}is dedicated to assessing the performance of the identified model.

Ideally, data in each set should be gathered from different engines to make them as
independent as possible. If this cannot be done for practical reasons, it is still important to
gather them from different experiments, for instance after changing the transducers or
their locations.

4.2. FREQUENCY BAND OF INTEREST

The pressure trace has to be recovered in a frequency band large enough for
malfunctions to be detected. A lower bound value may for example be given by the ability
to detect knocks which are known to entail a pressure gradient ðDPÞM higher than
0.5MPa/deg. By applying Bernstein’s inequality which relates the frequency bandwidth B

of a signal to its maximum derivative value and by denoting O the engine speed and PM

the maximum expected pressure value, one finds:

B4
OðDPÞM

2pPM

: ð17Þ
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For example, by putting PM ¼ 5Mpa, one finds a bandwidth B ’ 6O which is rather
low (e.g., B ’ 100Hz with O ¼ 1000 r.p.m.). In practice, we found it very conservative to
work with B within 1 � 3 kHz, i.e., a frequency band that should allow detection of most
of the possible malfunctions.

4.3. ANALYSIS OF RESULTS

This section presents some results of experiments run on a test rig at the University of
New South Wales (Australia). The engine under test was a 4 cylinder 4-stroke Volvo
diesel, on which the first cylinder was equipped with a pressure transducer and two
accelerometers on its head bolts. The sampling frequency was set to 23�8 kHz and the
engine speed to 900 r.p.m. A number of data recordings were performed for different load
torques, along with the recording of a one pulse per cycle signal. This enabled post-
synchronization of the data with respect to the top dead centre, so that after decimation by
a factor 4 the pressure and the accelerometer signals were coded with a mean value of 512
time samples on each revolution. This is illustrated in Figure 7. It was mentioned in section
3�1 that a simpler procedure would be to directly angle sample the vibration signal as
explained in Part I of this paper.

Different experiments allowed the data to be divided into a learning set, a validation set

and a test set. The data from the first accelerometer were used to set up the learning set
and, after repeating the experiment on another day, to set up the validation set. Finally,
the data for the test set were gathered from the second accelerometer mounted 5 cm away
from the first one, in order to simulate measurements made on a different engine.

4.3.1. Coherence analysis

Before starting the identification scheme, the learning set was used to verify some of the
assumptions made on the data. Figure 8 displays the ordinary coherence function g2PY

along with the multiple coherence function M2
PY between the pressure trace and its

resulting vibration signature. These functions are defined in reference [6] for cyclosta-
tionary processes and should be viewed as correlation coefficients that indicate at which
frequency lines an invariant or a periodically varying relationship should perform well.
Basically, an ordinary coherence function with values close to 1 will indicate a strong
linear invariant relationship, whereas a multiple coherence function with values close to 1
will rather indicate a strong linear periodically varying relationship. Here again, for the
coherence functions to be meaningful, it is customary to apply them to the centred
processes, i.e., after extraction of the synchronous averages as explained in section 3.3 and
in reference [1].

From Figure 8 it is therefore already predictable that the invariant linear filter will yield
poor reconstruction of the pressure trace in the low frequencies (52500Hz), where
unfortunately it has most of its energy. Alternatively, the linear periodically varying filter
fills in the gap there so that increased performance can already be expected.

Thus, the coherence analysis supports the prospect of using a periodically varying
inverse filter with evident demonstration that the difficult issue of reconstructing low-
frequency components from a higher-frequency signal is alleviated.

4.3.2. Invariant inverse filter approach

For the sake of comparison, reconstruction of the pressure trace was first performed
using the optimal invariant filter estimated on I ¼ 192 cycles of the learning set. It is worth
saying that in this case the accelerometer signals had to be pre-processed by applying a



Figure 7. Conditioning of the recorded signals before processing. Both acceleration and pressure signals from
the learning set are needed for the identification phase, while only the acceleration signal from the test set
intervenes in the decovolution phase.

Figure 8. (a) Ordinary and (b) multiple coherence functions estimated on pressure I ¼ 192 cycles. The
sequences were centred before estimation by extracting their synchronous averages.
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weighting function in order to isolate the vibration signatures resulting from the different
combustion events and also to make the inverse filter more robust by decreasing its
number of degree of freedom. Here a Laplace–Gauss weighting function was used and
showed similar efficiency as the suggested one-sided exponential function of reference [11].
The results obtained on the test set are displayed in Figure 9 for two different operating
points (5 and 35 daN indicated torque). Estimates of the pressure curves from
accelerometers 1 and 2 are compared with the actual pressure measurement in the dotted



Figure 9. Invariant inverse filter: comparison of the estimated (full lines) and measured (dotted line) pressure
traces on the test set. (a) Indicated torque=5daN. (b) Indicated torque=35 daN.

Figure 10. Evolution of the normalized prediction error (r.m.s. value) on the validation set w.r.t. to the
number of degrees of freedom. The minimum is attained for Nddl ¼ 53 for the block structure and Nddl ¼ 17; i.e,
K=8 for the filter-bank structure.
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line. Remember that sensor 1 was used for identifying the inverse filter and therefore is
expected to yield better performances than sensor 2 which was located 5 cm away.

Both estimates demonstrate the poor ability of the linear invariant inverse filter to
restitute low-frequency components. This expected effect is obviously more striking for
sensor 2.

4.3.3. Periodically varying inverse filter approach

The optimal inverse periodically varying filter was estimated on I ¼ 192 cycles of the
learning set. In this case, the filter-bank structure was found to yield the lowest prediction
error on the validation set with 2K þ 1 ¼ 17 Fourier coefficients. Therefore the
periodically varying filter could be compared with 17 invariant filters proceeding in
parallel. Figure 10 shows the evolution of the normalized prediction error in r.m.s. value
with respect to the number of degrees of freedom on the validation set for the two tested
structures.



Figure 11. Periodically varying inverse filter: comparison of the estimated (full lines) and measured (dotted
line) pressure traces on the test set. (a) Indicated torque=5daN. (b) Indicated torque=35daN.
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Incidentally, it was checked that virtually no weighting function was necessary to isolate
the vibration signatures resulting from the combustions, because the periodically varying
filter had a good ability to reject unwanted additive noise as explained in section 3�2�2.

Results for the reconstruction of the pressure traces in the test set are displayed in
Figure 11. As expected, the reconstruction is better achieved than before, especially when
considering low-frequency components. The periodically varying approach seems to solve
one of the ill-posed issues associated with the deconvolution of the pressure trace thanks to
a more complex design of the optimal inverse filter. This point was further confirmed by
verifying that the pressure traces could be reasonably reconstructed even after setting to
zero the frequency components of the vibration signatures in the band [0;600Hz], thus
demonstrating the robustness of the deconvolution scheme with respect to this issue.

Finally, note that both estimates from sensor 1 and 2 are very similar. Here again, this
demonstrates the superior robustness of the periodically varying filter with respect to
structural variability as discussed in section 3.2.2.

5. CONCLUSION

The cylinder pressure traces in internal combustion engines is recognized to be an
indicator of value, most often to be used for controlling a set of operating parameters, but
for diagnostic purposes as well. Despite its relevance, its actual use in condition
monitoring has been inhibited by the difficulty of measuring it.

This paper has addressed the feasibility of reconstructing the pressure trace from non-
intrusive vibration measurements by means of inverse filtering. This is a difficult problem
that is recognized to be ill-posed, at least for two reasons:

(1) the pressure trace has most of its energy in low frequencies (5500Hz) where it is
poorly conveyed as vibration energy to the engine block rigidity,

(2) the measured vibration signatures on the engine block are corrupted by non-negligible
additive noise such as piston slap and inertial forces.

The contribution of the paper was to recast the deconvolution problem into the
theoretical framework of cyclostationary processes which actually encompasses previous
studies and leads to new breakthroughs. As a matter of fact, a major result was to show
that the optimal inverse filter is to be sought in a periodically varying form instead of an



VIBRATION ANALYSIS OF IC ENGINES}II 855
invariant form as usually done. This result holds true under reasonable conditions: in fact,
as long as there is evidence of either (1) some additive (cyclostationary) noise, (2) some
random structural variability or (3) periodic variations of the input–output relationship
between the pressure trace and the vibration signature.

Basically, accepting a periodically varying inverse filter means that a component of the
pressure trace at a given frequency can be reconstructed from a linear combination of the
components of the vibration signature taken over a range of different frequencies. It was
shown that exploitation of this spectral redundancy helps to counteract the effect of
corrupting noise and enables reconstruction of low-frequency components from higher-
frequency ones, thus alleviating the ill-posed nature of the deconvolution problem.

Finally guidelines for the implementation and identification of the inverse periodically
varying filter were given. They largely rely on the concept of cyclic statistics introduced in
the first part of this paper.

Parts I and II of this paper have both addressed the prospects of condition monitoring
IC engines from structural vibration measurements. The authors hope they have succeeded
in demonstrating that a number of recognized difficulties associated with this issue can be
efficiently tackled by taking advantage of the cyclostationarity of the involved processes.
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